EconPapers    
Economics at your fingertips  
 

Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning

Zhi Wu, Yiqi Li, Xiao Zhang, Shu Zheng and Jingtao Zhao

Applied Energy, 2025, vol. 379, issue C, No S0306261924023687

Abstract: In the multi-feeder distribution network, the power balance between photovoltaics generations and load demands across regions is more complex. To solve the above problems, this paper proposes a multi-agent distributed voltage control strategy based on robust deep reinforcement learning to reduce voltage deviation. The whole multi-feeder distribution network is divided into a main agent and several sub-agents, and a multi-agent distributed voltage control model considering the transmission network voltage fluctuations and the corresponding power fluctuations is established. Based on the information uploaded by sub-agents, the main agent models the uncertainty of the transmission network voltage fluctuations and the corresponding power fluctuations as a disturbance to the state, and a RDRL method is employed to determine the tap position of on-load tap changer. Furtherly, each sub-agent uses the second-order cone relaxation technique to adjust the reactive power outputs of the inverters on each feeder. The effectiveness of the proposed method has been verified in two real-world multi-feeder systems. The results show that the proposed method can achieve millisecond-level decision-making, with a voltage deviation only 1.28 % higher than the global optimal results, achieving near-optimal control. The proposed method also demonstrates robustness in handling transmission network uncertainties and partial measurement loss.

Keywords: Multi-feeder distribution network; Voltage control; Multiple agents; Robust deep reinforcement learning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023687
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023687

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124984

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023687