Two-step electro-thermochemical cycle for CO2 splitting in a solid oxide electrochemical cell
Heng Pan,
Yuhao Zhao,
Feiyu He,
Liya Zhu,
Zhaolu Wang,
Yihang Li and
Youjun Lu
Applied Energy, 2025, vol. 380, issue C, No S0306261924023821
Abstract:
Solar CO2 splitting via a two-step thermochemical cycle (TSTC) has emerged as a promising technology for solar fuel production. However, the extreme reduction temperature (Tred) required to achieve optimal CO yields poses challenges in reactor design, operation, and solar-to-fuel energy efficiency. In this study, a two-step electro-thermochemical cycle (TSEC) for CO2 splitting into CO using a solid oxide electrochemical cell (SOEC) is presented with the objective of reducing Tred and improving solar-to-fuel energy efficiency. The investigations reveal that TSEC exhibits the capability to decrease Tred from 1500 °C to 1000 °C, while simultaneously maintaining a substantial CO yield of 550 μmol/g. Moreover, the efficiency analysis demonstrates that TSEC achieves a superior solar-to-fuel energy efficiency of 20.4 %, outperforming 4.1 % of conventional TSTC. In sum, this study demonstrates a novel approach to solar fuel production, enabling high and stable CO2-to-CO conversion at moderate temperatures while maintaining high energy efficiency.
Keywords: Solar energy; Electro-thermochemical cycle; Solid oxide electrochemical cell; CO2 splitting; Perovskite oxides (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023821
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023821
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124998
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().