Review of machine learning techniques for optimal power flow
Hooman Khaloie,
Mihály Dolányi,
Jean-François Toubeau and
François Vallée
Applied Energy, 2025, vol. 388, issue C, No S0306261925003678
Abstract:
The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.
Keywords: End-to-end (E2E) learning; Learning-to-optimize (L2O); Machine learning; Optimal power flow (OPF); Power systems (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925003678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003678
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125637
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().