Asymmetric auto-rebalancing of electrolyte for high capacity retention and high energy efficiency of vanadium redox flow batteries
Wen-Jiang Zou and
Seunghun Jung
Applied Energy, 2025, vol. 388, issue C, No S0306261925003939
Abstract:
Capacity fade and performance degradation under long-term operation are critical concerns in the application of vanadium redox flow batteries (VRFBs) in large-scale energy-storage systems. This study introduces an innovative electrolyte-rebalancing technique named asymmetric auto-rebalancing (AAR) to achieve high capacity retention and high efficiency of VRFBs during long-term operation. Three VRFBs—one each without rebalancing (NR), with auto-rebalancing (AR), and with AAR—were prepared for a performance comparison. Also, the capacity and performance degradation mechanisms of VRFBs with three different electrolyte rebalancing methods were theoretically analyzed. Long-term charge–discharge cycling tests were conducted on the VRFBs to verify the effectiveness of AAR according to the current, temperature, and electrolyte flow rate. AAR showed the most consistent performance under long-term operation, with negligible electrolyte imbalance. Further, AAR achieved the most stable capacity retention and highest energy efficiency (84.66 %) compared to NR (82.77 %) and AR (82.98 %). Finally, the electrolyte volume change was predicted by a theoretical analysis, which was consistent with the experimental results.
Keywords: Vanadium redox flow battery; Capacity recovery; Asymmetric auto-rebalancing; Electrolyte rebalancing (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925003939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003939
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125663
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().