Extreme day-ahead renewables scenario selection in power grid operations
Guillermo Terrén-Serrano and
Michael Ludkovski
Applied Energy, 2025, vol. 391, issue C, No S0306261925004775
Abstract:
We propose and analyze the application of statistical functional depth metrics for the selection of extreme scenarios for realized electric load, as well as solar and wind generation in day-ahead grid planning. Our primary motivation is screening probabilistic scenarios to identify those most relevant for operational risk mitigation. To handle the high-dimensionality of the scenarios across asset classes and intra-day periods, we employ functional measures of depth to sub-select outlying scenarios that are most likely to be the riskiest for the grid operation. We investigate a range of functional depth measures, as well as a range of operational risks, including load shedding, operational costs, reserve shortfalls, and variable renewable energy curtailment. The effectiveness of the proposed screening approach is demonstrated through a case study on the realistic Texas-7k grid.
Keywords: Functional depth; Operational planning; Power grids; Renewable energy; Statistical extremality (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925004775
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:391:y:2025:i:c:s0306261925004775
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125747
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().