Multi timescale battery modeling: Integrating physics insights to data-driven model
Tushar Desai,
Alexander J. Gallo and
Riccardo M.G. Ferrari
Applied Energy, 2025, vol. 393, issue C, No S0306261925007706
Abstract:
Developing accurate models for batteries, capturing ageing effects and nonlinear behaviors, is critical for the development of efficient and effective performance. Due to the inherent difficulties in developing physics-based models, data-driven techniques have been gaining popularity. However, most machine learning methods are black boxes, lacking interpretability and requiring large amounts of labeled data. In this paper, we propose a physics-informed encoder–decoder model that learns from unlabeled data to separate slow-changing battery states, such as state of charge (SOC) and state of health (SOH), from fast transient responses, thereby increasing interpretability compared to conventional methods. By integrating physics-informed loss functions and modified architectures, we map the encoder output to quantifiable battery states, without needing explicit SOC and SOH labels. Our proposed approach is validated on a lithium-ion battery ageing dataset capturing dynamic discharge profiles that aim to mimic electric vehicle driving profiles. The model is trained and validated on sparse intermittent cycles (6 %–7 % of all cycles), accurately estimating SOC and SOH while providing accurate multistep ahead voltage predictions across single and multiple-cell based training scenarios.
Keywords: Encoder–decoder; Physics informed machine learning; Multi timescale battery modeling; Sparse-unlabeled data (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925007706
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007706
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126040
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().