Electrification-enabled production of Fischer-Tropsch liquids – A process and economic perspective
Mahsa Mehrara,
Sennai Mesfun,
Johan Ahlström,
Andrea Toffolo and
Elisabeth Wetterlund
Applied Energy, 2025, vol. 393, issue C, No S030626192500813X
Abstract:
Transitioning to biofuels is crucial for reducing greenhouse gas (GHG) emissions in transportation, but limited biomass availability requires maximizing carbon efficiency. This study evaluates Fischer-Tropsch liquid (FTL) production from biomass, focusing on the impact of partial electrification and carbon capture and storage (CCS) on efficiency and flexibility. Five configurations—ranging from a biomass-intensive base case to a fully electrified process—are simulated and assessed through techno-economic and GHG evaluations under fluctuating energy prices. Full electrification achieves the highest carbon efficiency, increasing carbon-to-liquid fuel conversion from 37 % to 91 %, but faces challenges due to high electricity demand (up to 2.5 MWh per MWh of fuel) and reliance on low-carbon grids. Partial electrification offers a cost-effective alternative, reducing production costs by up to 40 % compared to fully electrified cases, while maintaining a carbon efficiency of around 60 %. CCS enables net-negative emissions, though its viability hinges on sufficiently strong carbon pricing incentives. Compliance with sustainability mandates, such as Renewable Fuels of Non-Biological Origin (RFNBO) requirements, depends on access to decarbonized electricity. Overall, partially electrified BtL pathways enhance carbon utilization, reduce emissions, and offer resilience to market fluctuations. These pathways provide a promising balance of environmental and economic performance, outperforming both traditional BtL under high biomass prices and fully electrified e-fuels in terms of cost. Their advantages make them attractive from both investment and policy perspectives—especially in markets supported by stable electricity prices, carbon incentives, and sustainability-driven regulation.
Keywords: Advanced biofuels; E-fuels; Fischer-Tropsch; Biomass gasification; Techno-economic assessment (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192500813X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s030626192500813x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126083
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().