Simulation and performance optimization of a novel hybrid CCHP system based on the prime movers of internal combustion engine and Stirling engine
Mohammad Sheykhi,
Mahmood Mehregan,
Saeed Ghorbani,
Amin Emamian,
Mohammad Hassan Kayhani,
Amin Amiri Delouei,
Shahabodin Kharazmi,
Mohammad Kazem Sheykhian and
Shunmin Zhu
Applied Energy, 2025, vol. 393, issue C, No S0306261925008335
Abstract:
Combined cooling, heating, and power systems (CCHP) could increase the efficiency of conventional energy supply systems and mitigate carbon emissions. In this paper, a novel arrangement of a combined cooling, heating, and power (CCHP) system is presented with prime movers of internal combustion and Stirling engines, which are numerically simulated by Range-Kutta method and optimized with the genetic algorithm technique. The influence of some key parameters such as Stirling engine speed, phase angle, length and porosity of Stirling engine's regenerator, and also speed and spark timing of the internal combustion engine, on the capacity, efficiency, primary energy saving and the investment payback period of the CCHP system has been discussed. The results illustrated that using the CCHP system with hybrid prime movers, due to the appropriate efficiency of the combustion engine, allows the Stirling engine to be started at high speeds. In this condition, the overall efficiency of the hybrid system is increased by 12 % compared to using the CCHP system with only the Stirling engine. Additionally, the payback period of the CCHP system with combined prime movers at 3500 rpm for the two engines is approximately 4.4 years, which is about 1.6 years shorter than the payback period of the CCHP system based solely on the internal combustion engine. This work provides valuable insights into the design and optimization of hybrid CCHP systems with two different combustion-based prime movers.
Keywords: CCHP; Internal combustion engine; Stirling engine; Porosity; Spark timing; Investment payback period (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925008335
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008335
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126103
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().