Entropy state calculation model for integrated energy systems
Yizhe Li,
Dan Wang,
Jiaxi Li,
Hongjie Jia,
Tianshuo Zhou,
Jiawei Liu and
Hao Cheng
Applied Energy, 2025, vol. 394, issue C, No S0306261925008931
Abstract:
The integration of renewable energy sources and multi-energy networks in integrated energy systems (IES) introduces significant challenges related to energy degradation, driven by exergy losses during energy conversion/transmission and uncertainty-induced usability reduction. To address these issues, this study proposes a novel entropy state calculation model and analytical framework for assessing energy quality degradation within IES. By unifying thermodynamic entropy (quantifying physical exergy loss) and information entropy (capturing uncertainty-driven energy mismatch), the model integrates physical and information systems into a cohesive entropy state framework. The methodology is validated through a case study on a real-world IES in Tianjin, China (TJBC), demonstrating its capability to reveal entropy state distributions across subsystems under varying network structures and operational modes. Results highlight the dominance of energy conversion processes (e.g., combined heat and power units) in system-wide entropy increase and the critical role of renewable uncertainty in local energy quality degradation. The proposed framework provides a unified metric for optimizing energy efficiency, guiding infrastructure planning, and mitigating energy degradation in high-renewable-penetration IES, contributing to sustainable and high-quality energy system development.
Keywords: Integrated energy system; Uncertainty; Energy degradation; Entropy state; Entropy increase flow (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925008931
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008931
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126163
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().