Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control
Chunchun Jia,
Wei Liu,
Hongwen He and
K.T. Chau
Applied Energy, 2025, vol. 394, issue C, No S0306261925009250
Abstract:
Despite the significant advantages of fuel cell (FC) vehicles in reducing urban air pollution and extending driving range, effectively managing their internal energy systems remains a major challenge. To maximize the operational efficiency and lifespan of the FC system without compromising fuel economy, this paper proposes a novel predictive energy management paradigm guided by deep reinforcement learning. This strategy innovatively integrates driving intention speed prediction and health-aware control. Specifically, we developed a multi-input bi-directional long short-term memory (BiLSTM) predictor incorporating driving intentions (DI-BiLSTM) using the fuzzy C-means algorithm to enhance the prediction accuracy of future vehicle state trajectories. Downstream control decisions are executed through an improved deep deterministic policy gradient (DDPG) algorithm, which optimizes action space selection based on the degradation characteristics of the FC system. Additionally, during the training and validation phases of the energy management strategy (EMS), we utilized high-quality driving data collected from real bus routes using a high-performance Beidou integrated navigation system, replacing conventional standard driving cycles to enhance the strategy's generalization ability across different scenarios. The results indicate that, compared with conventional prediction model relying solely on historical speed data, the DI-BiLSTM improves prediction accuracy by at least 7.86 % over 3 s, 5 s, and 8 s prediction horizons. Compared with conventional DDPG-based EMS, the proposed EMS increases the average efficiency of the FC system by 32.18 % and extends its lifespan by 16.50 %. In terms of overall driving costs, the proposed EMS improves driving economy by 9.97 % compared with conventional DDPG-based EMS.
Keywords: Energy management strategy; Fuel cell bus; Deep reinforcement learning; Driving intention fusion; Health-aware control (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925009250
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009250
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126195
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().