A Distributionally robust game approach for integrated energy systems with prosumer interactive transactions
Lei Dong,
Yang Li,
Tao Zhang,
Zibo Wang and
Tianjiao Pu
Applied Energy, 2025, vol. 396, issue C, No S0306261925009389
Abstract:
The access of prosumers in the integrated energy system (IES) has great potential in improving system flexibility and economic operation. However, due to the complex coupling relationship and interest competition among different subjects, and the participation of renewable energy, this brings new challenges to the coordinated optimization operation of IES. To address this problem, this paper proposes a DRO-Stackelberg-Nash game model considering the uncertainty of renewable energy and the interaction of multiple stakeholders. The model takes the IES operator as the upper-level leader, considers its carbon capture system and power-to-gas device, and pursues low-carbon economic operation; the prosumers are the lower-level followers, participate in the upper-level decision-making in a cooperative manner, and realize the distribution of cooperative benefits based on asymmetric Nash bargaining theory. Secondly, the distributionally robust method is introduced to deal with the uncertainty of renewable energy, and it is nested in the above-mentioned game framework, which effectively realizes the balance of interests of different subjects under uncertainty scenarios. Finally, a step-by-step solution algorithm was developed to solve the model, which allows us to replace the lower-level prosumer model with KKT conditions in the first step, transform the two-level optimization problem into a single-level problem, and then use C&CG to obtain the optimal solution of the model; on this basis, the ADMM algorithm is used in the second step to solve the payment price between prosumers. Case studies show that the proposed method has good results in improving economic performance and reducing carbon emissions.
Keywords: Stackelberg-nash game; Asymmetric nash bargaining theory; Distributionally robust optimization; Integrated energy systems (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925009389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009389
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126208
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().