Hollow thermoelectric legs with extremely low power-generation cost compatible with scalable manufacturing
Yousung Choi,
Sungjin Park and
Woochul Kim
Applied Energy, 2025, vol. 398, issue C, No S0306261925010888
Abstract:
Although thermoelectric systems offer advantages such as compactness, silent operation, absence of moving parts, and long-term reliability, their applicability is hindered by high power-generation costs ($/W). This study introduces hollow thermoelectric legs that achieve extremely low $/W while being compatible with existing scalable manufacturing processes. A sodium chloride rod was sintered together with thermoelectric materials and then dissolved to obtain the hollow structure. This unique structure enables reduced material consumption by 60 % (low $) as well as 230 % enhancement in power output (high W) leading to 83 % reduction in $/W over a conventional thermoelectric device with fully filled legs. The scalability of the manufacturing process for the proposed device was also verified by fabricating a thermoelectric module and evaluating its performance. The results achieved with the proposed device architecture highlight the potential for the commercialization of thermoelectric generators.
Keywords: Thermoelectric generator; $/W (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925010888
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925010888
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126358
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().