Probability-density function model of turbulent hydrogen flames
A. T. Hsu and
G. -B. He
Applied Energy, 2000, vol. 67, issue 1-2, 117-135
Abstract:
Hydrogen combustion attracted much attention recently because of the need for clean alternative energy. For the theoretical/numerical study of hydrogen combustion, there is a need for modeling capabilities for turbulent hydrogen flames. The present work examines the applicability of probability density function (pdf) turbulence models. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation, has been developed. The algorithm is validated using experimental data for a heated turbulent plane jet. A study of H2-F2 diffusion flames has been carried out using this algorithm. Numerical results show that the pdf method is capable of correctly simulating turbulence effects in hydrogen combustion.
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(00)00009-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:67:y:2000:i:1-2:p:117-135
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().