Experimental investigation of flashback during start-up in practical premixed combustion
Hidenori Koseki and
Minoru Sato
Applied Energy, 2002, vol. 73, issue 3-4, 237-259
Abstract:
An experimental investigation of flashback was conducted during the start-up of a practical premixed kerosene burner. The flame propagations for normal ignition and flashback were visualized with high time-resolution. The timing of the fuel supply and ignition, as well as time sequence variations in pressures and temperatures in the burner, were analyzed to clarify the phenomena. The accumulated data revealed that flashback was caused by reverse flow of the hot combustion products through the flashback arrester and that the probability of flash back increased with increasing ignition delay, due to the higher pressures resulting from ignition and burning of the fuel accumulated in the combustion chamber during the delay. The thermal energy passing through the perforated plate used for flame quenching between the combustion chamber and the evaporating chamber was estimated using the reverse-flow pressures and their periods. The ignition energy estimated for the kerosene vapor mixtures was of the order of 10 mJ, which corresponds to the minimum ignition energy of other hydrocarbon fuels.
Keywords: Flashback; Ignition; Flame; propagation; Reverse; flow; Minimum; ignition; energy; Practical; combustion (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00117-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:73:y:2002:i:3-4:p:237-259
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().