EconPapers    
Economics at your fingertips  
 

Resource-effective systems achieved through changes in energy supply and industrial use: The Volvo-Skövde case

Louise Trygg, Alemayehu Gebremedhin and Björn G. Karlsson

Applied Energy, 2006, vol. 83, issue 8, 818 pages

Abstract: The result presented in this paper shows that the Volvo plant can decrease its electricity use by 44% by making the use of electricity more efficient and converting from oil and electricity to district heating for hot tap-water, space heating and cooling. The increased demand of district heating makes investing in a new planned CHP and cooperation between the Volvo plant and the local energy utility production cost fall by 46% at current unit electricity price and by 64% when calculating with a European unit electricity price and investment in an optimised CHP system instead of the planned plant. The study furthermore shows that the global emissions of the greenhouse gas carbon-dioxide will be reduced by 350% a year if the two energy-supply measures are taken and the electricity unit prices are at a European level.

Keywords: CHP; Co-operation; Deregulated; electricity; market; District; heating; Electricity; price; Emission; trading (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00127-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:83:y:2006:i:8:p:801-818

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:83:y:2006:i:8:p:801-818