EconPapers    
Economics at your fingertips  
 

Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant

E. Grieco and A. Poggio

Applied Energy, 2009, vol. 86, issue 9, 1517-1523

Abstract: Municipal solid waste incinerators are designed to enhance the electrical efficiency obtained by the plant as much as possible. For this reason strong integration between the flue gas cleaning system and the heat recovery system is required. To provide higher electrical efficiencies acid gas neutralization process has the major importance in flue gas cleaning system. At least four technologies are usually applied for acid gas removal: dry neutralization with Ca(OH)2 or with NaHCO3, semi-dry neutralization with milk of lime and wet scrubbing. Nowadays, wet scrubbers are rarely used as a result of the large amount of liquid effluents produced; wet scrubbing technology is often applied as a final treatment after a dry neutralization. Operating conditions of the plant were simulated by using Aspen Plus in order to investigate the influences of four different technologies on the electrical efficiency of the plant. The results of the simulations did not show a great influence of the gas cleaning system on the net electrical efficiency, as the difference between the most advantageous technology (neutralization with NaHCO3) and the worst one, is about 1%.

Keywords: Electrical; efficiency; Waste; incinerator; Simulation; Flue; gas; cleaning (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00359-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:9:p:1517-1523

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1517-1523