Modeling of transient hydrogen permeation process across a palladium membrane
Wei-Hsin Chen and
I-Han Chiu
Applied Energy, 2010, vol. 87, issue 3, 1023-1032
Abstract:
Transient mass transfer processes of hydrogen permeating through a Pd membrane are modeled to aid in predicting the hydrogen transport behavior. The model is established in terms of the quasi-steady time and the steady permeation rate. Meanwhile, four important parameters are considered; they are the permeation lag time, the initial permeation rate, the concave up period and the concave down period. A unit step function is embedded in the model to account for the effect of the hydrogen permeation lag at a lower pressure difference. Corresponding to the lower, the moderate and the higher pressure differences (i.e. 3, 5 and 8Â atm), though the hydrogen permeation undergoes a three-stage, a two-stage and a one-stage processes, respectively, these processes can be predicted well by an arc tangential function. By introducing an adjusting parameter in the arc tangential function, there exists an optimal value of the adjusting parameter when the pressure difference is lower. In regard to the moderate and higher pressure differences, the predictions agree with experiments well if the adjusting parameter is sufficiently large. Physically, the unit step function is used to account for the controlling mechanisms of hydrogen diffusion toward the membrane and the spillover of the hydrogen across the membrane. The initial jump parameter represents the rapid response of the initial hydrogen permeation. The adjusting parameter can be used to describe the relative importance of the concave up and the concave down periods.
Keywords: Model; Transient; hydrogen; permeation; Palladium; membrane; Hydrogen; separation; Spillover (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00422-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:3:p:1023-1032
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().