Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient
B. Kundu
Applied Energy, 2010, vol. 87, issue 7, 2243-2255
Abstract:
The absorber of a collector receives solar energy which is delivered to the transport medium to be carried away as useful energy. During this process, temperature of the absorber plate increases and therefore, thermophysical parameters engaged to determine the thermal performance of an absorber plate varies with temperature of the plate. The present study demonstrates analytically to determine the performance of an absorber plate fin with temperature dependent both thermal conductivity and overall heat loss coefficient. The decomposition method is proposed for the solution methodology. An optimum design analysis has also been carried out. A comparative study has been executed among the present results and that of existed in the published work, and a notable difference in results has been found. Finally, unlike published work, dependency parameters on the performances and optimum design have been highlighted.
Keywords: Analytical; Flat; plate; Fin; Optimization; Performance; Solar; collector (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00010-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:7:p:2243-2255
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().