Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems
L.G. González,
E. Figueres,
G. Garcerá and
O. Carranza
Applied Energy, 2010, vol. 87, issue 7, 2304-2312
Abstract:
This paper presents an improved maximum-power-point tracking algorithm for wind-energy-conversion-systems. The proposed method significantly reduces the turbine mechanical stress with regard to conventional techniques, so that both the maintenance needs and the medium time between failures are expected to be improved. To achieve these objectives, a sensorless speed control loop receives its reference signal from a modified Perturb&Observe algorithm, in which the typical steps on the reference speed have been substituted by a fixed and well-defined slope ramp signal. As a result, it is achieved a soft dynamic response of both the torque and the speed of the wind turbine, so that the whole system suffers from a lower mechanical stress than with conventional P&O techniques. The proposed method has been applied to a wind turbine based on a permanent magnet synchronous generator operating at variable speed, which is connected to the distribution grid by means of a back to back converter.
Keywords: Wind-energy-conversion-systems; Maximum-power-point; tracking; Perturbation-observation-method; Mechanical; stress (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00517-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:7:p:2304-2312
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().