Energy savings by co-production: A methanol/electricity case study
Guang-jian Liu,
Zheng Li,
Ming-hua Wang and
Wei-dou Ni
Applied Energy, 2010, vol. 87, issue 9, 2854-2859
Abstract:
The overall exergy losses of co-production systems were decomposed into five sub-systems: chemical reaction processes, heat exchange processes, external exergy losses, turbine/mechanical exergy losses and others. By defining new parameters called energy-saving factors, we quantitatively describe the contribution of these processes to the overall energy savings relative to separate production systems. A methanol/electricity co-production system is taken as case study, results show that heat exchange processes are the main contribution to the energy savings.
Keywords: Co-production; system; Coal; gasification; Exergy; analysis; Energy-saving; factor (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00370-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:9:p:2854-2859
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().