EconPapers    
Economics at your fingertips  
 

Experimental investigation of frost formation on a parallel flow evaporator

Jianghong Wu, Guang Ouyang, Puxiu Hou and Haobin Xiao

Applied Energy, 2011, vol. 88, issue 5, 1549-1556

Abstract: This paper experimentally studied the frosting process of a folded-louvered-fin, parallel flow microchannel evaporator in a heat pump central air-conditioning system under three conditions, in which three open states of two capillaries were adopted. Surface temperature distribution on evaporator was measured by 16 thermocouples buried on the leeward side. Mesoscale frost formation processes on its front view surface for three different test conditions were observed using a Charge Coupled Device (CCD) camera. The results showed that the surface temperature distribution on the parallel flow evaporator was uneven and initial frost formation generally started on some partial surface areas of the louvered fins whose surface temperature was lowest after the heat pump system running 6Â min later under conditions B and C, while the evaporator began to frost after 8Â min under condition A. The non-uniform surface temperature distribution caused by the unequal distribution of the refrigerant flux in the flat tubes' microchannels resulted in uneven distribution of frost. The ice crystals distribution and frost thickness in frost period could be obtained by the digital image processing method in which the initial pictures were converted into binary image. The results indicated that in a thin layer near fins' surface, ice crystals had relatively high occupancy rate in the frost growing period and full growth period; the occupancy rate of ice crystals decreased almost linearly with the increasing of the frost thickness (frost height), where the decreasing rate in the frost full grown period was less than that in the frost growing period (in 0.1Â mm frost thickness condition, the occupancy rate of ice crystals decreased to 58% in the frost growing period, while in the frost full grown period occupancy rate of ice crystals decreased to 90%; and in 0.25Â mm frost thickness, they were 0%, 45% respectively). Furthermore, it can be found that the frost thickness increased as the time increasing and then finally reached maximum values of 0.3Â mm, 0.35Â mm, and 0.32Â mm respectively at three conditions.

Keywords: Parallel; flow; evaporator; Surface; temperature; Frost; formation; Ice; crystals; Microchannel (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00469-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:5:p:1549-1556

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1549-1556