High swirl-inducing piston bowls in small diesel engines for emission reduction
B.V.V.S.U. Prasad,
C.S. Sharma,
T.N.C. Anand and
R.V. Ravikrishna
Applied Energy, 2011, vol. 88, issue 7, 2355-2367
Abstract:
Detailed three-dimensional CFD simulations involving flow and combustion chemistry are used to study the effect of swirl induced by re-entrant piston bowl geometries on pollutant emissions from a single-cylinder diesel engine. The baseline engine configuration consists of a hemispherical piston bowl and an injector with finite sac volume. The first iteration involved using a torroidal, slightly re-entrant bowl geometry, and a sac-less injector. Pollutant emission measurements indicated a reduction in emissions with this modification. Simulations on both configurations were then conducted to understand the effect of the changes. The simulation results indicate that the selected piston bowl geometry could actually be reducing the in-cylinder swirl and turbulence and the emission reduction may be entirely due to the introduction of the sac-less injector. In-cylinder air motion was then studied in a number of combustion chamber geometries, and a geometry which produced the highest in-cylinder swirl and Turbulence Kinetic Energy (TKE) around the compression top dead centre (TDC) was identified. The optimal nature of this re-entrant piston bowl geometry is confirmed by detailed combustion simulations and emission predictions.
Keywords: Diesel; engine; emissions; Swirl; Combustion; Computational; Fluid; Dynamics; (CFD); Piston; bowl; Injector; sac; volume (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00588-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:7:p:2355-2367
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().