EconPapers    
Economics at your fingertips  
 

An analytical model for coupled heat and mass transfer processes in solar collector/regenerator using liquid desiccant

Donggen Peng and Xiaosong Zhang

Applied Energy, 2011, vol. 88, issue 7, 2436-2444

Abstract: Solar collector/regenerator (C/R) using liquid desiccant combines solar photothermic transformation and regeneration of liquid desiccant together, effectively achieving the regeneration for solar energy-driven liquid desiccant cooling systems. In this paper a group of dimensionless heat and mass transfer equations describing the heat and mass transfer process in the solar C/R were obtained by introducing total temperature difference ([Delta]T0) and dimensionless heat loss coefficient . For the sake of predicting the heat loss of air stream and simplifying calculation, the models of dimensionless air temperature ([theta]a) and equilibrium humidity ratio (YeL) along with the height of solar C/R were put forward. An analytical solution was formed by two differential equations on the dimensionless heat and mass transfer driving potentials and the heat and mass conservation equations. Compared with the numerical simulation results, the analytical results on the outlet parameters of solar C/R have great precision with different Lewis factor Le, total temperature difference [Delta]T0 and air-to salt mass flow rate ratio ASMR. Simultaneously, the effects of above variables on the regeneration performance were analyzed. Lastly, by comparing with the experimental data, the analytical calculation results can agree well with the experimental results validating the analytical model is an ideal way for predicting the performance of the solar C/R.

Keywords: Solar; collector/regenerator; Total; temperature; difference; Dimensionless; heat; loss; coefficient; Heat; and; mass; transfer; driving; potentials (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00045-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:7:p:2436-2444

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2436-2444