Co-evaporative multi-component fuel design for in-cylinder PLIF measurement and application in gasoline direct injection research
Xiao Ma,
Xu He,
Jian-xin Wang and
Shijin Shuai
Applied Energy, 2011, vol. 88, issue 8, 2617-2627
Abstract:
For in-cylinder fuel mixture distribution measurement, a method for designing a multi-component fuel for planar laser-induced fluorescence (PLIF) experiments is developed based on thermal gravity analysis and vapor-liquid equilibrium calculation. The goal is to create fuel that has a volatility similar to real gasoline and good co-evaporation ratios (near 1.0) with tracers. Acetone, toluene, and trimethylbenzene are chosen as tracers for light, medium, and heavy fractions, respectively, and a five-component test fuel is developed. The test fuel is used to study the influence of components and temperature on co-evaporation ratios. Any variation in tracer or fuel component proportions affects all co-evaporation ratios, but a variation within 5% is considered acceptable. Results show that acetone presents the most significant influence on co-evaporation ratios. Temperature is also a key factor. Saturated vapor pressure and activity coefficient of the tracer and components in a fraction group affect co-evaporation optimization substantially, indicating that these values are a primary consideration in tracer selection. Finally, the test fuel is applied to an in-cylinder gasoline direct injection fuel mixture distribution measurement using PLIF. Differences between light, medium, and heavy fraction groups are studied under different strategies. Cycle-to-cycle variation analysis shows that the influence of absorption attenuation of the aromatic is distinct in a typical stratified strategy. In the area near the spark plug, cycle-to-cycle variation decreases as injection is delayed.
Keywords: Multi-component; fuel; Co-evaporation; PLIF; VLE; Thermal; gravity (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00061-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:8:p:2617-2627
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().