EconPapers    
Economics at your fingertips  
 

Comparison of ZnO interlayers in inverted bulk heterojunction solar cells

D. Rana Bekci, Adem Karsli, A. Cagatay Cakir, Hizir Sarica, Alper Guloglu, Serap Gunes and Sule Erten-Ela

Applied Energy, 2012, vol. 96, issue C, 417-421

Abstract: This paper is devoted to the development of inverted-type bulk heterojunction solar cells based on zinc oxide (ZnO) interlayers, poly-3-hexylthiophene (P3HT) and PCBM using simple synthesis procedures and deposition techniques. We compare device structures and performances consisting of poly-3-hexylthiophene (P3HT) polymer and PCBM in contact with three different types of ZnO interlayers: a ZnO backing interlayer alone using spin coating process; nanorod ZnO interlayers from Zn2+:HO− solutions using deep coating process and finally nanorod ZnO interlayers from Zn2+:HO− solutions onto ZnO backing interlayer using spin coating process. The best device configuration is fabricated in a ZnO backing interlayer/nanorod ZnO interlayer by spincoating process/P3HT:PCBM/Gold cell architecture which exhibits a power conversion efficiency of 2.73% under 100mW/cm2 AM 1.5G simulated solar emission. Atomic force microscopy (AFM) and photovoltaic device measurements are used to study the morphology and device performance of the three different types of ZnO interlayers.

Keywords: Inverted-type bulk heterojunction solar cells; ZnO interlayers; Energy efficiency (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191200178X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:96:y:2012:i:c:p:417-421

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.02.077

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:417-421