Extending the deterministic Riemann–Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations
C. Burgos,
J.-C. Cortés,
L. Villafuerte and
R.-J. Villanueva
Chaos, Solitons & Fractals, 2017, vol. 102, issue C, 305-318
Abstract:
This paper extends both the deterministic fractional Riemann–Liouville integral and the Caputo fractional derivative to the random framework using the mean square random calculus. Characterizations and sufficient conditions to guarantee the existence of both fractional random operators are given. Assuming mild conditions on the random input parameters (initial condition, forcing term and diffusion coefficient), the solution of the general random fractional linear differential equation, whose fractional order of the derivative is α ∈ [0, 1], is constructed. The approach is based on a mean square chain rule, recently established, together with the random Fröbenius method. Closed formulae to construct reliable approximations for the mean and the covariance of the solution stochastic process are also given. Several examples illustrating the theoretical results are included.
Keywords: Random mean square Riemann–Liouville integral; Random mean square Caputo derivative; Random fractional linear differential equation; Random Fröbenius method (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917300486
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:102:y:2017:i:c:p:305-318
DOI: 10.1016/j.chaos.2017.02.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().