Modeling nonlinear wave regimes in a falling liquid film entrained by a gas flow
O.Yu. Tsvelodub and
A.A. Bocharov
Chaos, Solitons & Fractals, 2017, vol. 104, issue C, 580-587
Abstract:
The article studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers, the problem is reduced to solving a nonlinear integro-differential equation for the film thickness deviation from the undisturbed level. The nature of branching of wave modes of the unperturbed flow with a flat interface has been investigated. The steady-state traveling solutions with wave numbers that are far enough from the neutral ones, have been numerically found. Using methods of stability theory, the analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that, similarly to the case of the falling film, this model equation has solutions in the form of solitons-humps.
Keywords: Flowing film; Gas flow; Nonlinear model equation; Stability; Steady-state traveling solutions; Soliton solutions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917303855
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:104:y:2017:i:c:p:580-587
DOI: 10.1016/j.chaos.2017.09.018
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().