Chaotic fluctuations in graphs with amplification
Stefano Lepri
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
We consider a model for chaotic diffusion with amplification on graphs associated with piecewise-linear maps of the interval. We investigate the possibility of having power-law tails in the invariant measure by approximate solution of the Perron-Frobenius equation and discuss the connection with the generalized Lyapunov exponents L(q). We then consider the case of open maps where trajectories escape and demonstrate that stationary power-law distributions occur when L(q)=r,with r being the escape rate. The proposed system is a toy model for coupled active chaotic cavities or lasing networks and allows to elucidate in a simple mathematical framework the conditions for observing Lévy statistical regimes and chaotic intermittency in such systems.
Keywords: Chaotic map; Power-law distributions; Diffusion and amplification on graphs; Generalized Lyapunov exponents (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792030401X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030401x
DOI: 10.1016/j.chaos.2020.110003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().