EconPapers    
Economics at your fingertips  
 

Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA)

Ali Behnood, Emadaldin Mohammadi Golafshani and Seyedeh Mohaddeseh Hosseini

Chaos, Solitons & Fractals, 2020, vol. 139, issue C

Abstract: Recently, anovel coronavirus disease (COVID-19) has become a serious concern for global public health. Infectious disease outbreaks such as COVID-19 can also significantly affect the sustainable development of urban areas. Several factors such as population density and climatology parameters could potentially affect the spread of the COVID-19. In this study, a combination of the virus optimization algorithm (VOA) and adaptive network-based fuzzy inference system (ANFIS) was used to investigate the effects of various climate-related factors and population density on the spread of the COVID-19. For this purpose, data on the climate-related factors and the confirmed infected cases by the COVID-19 across the U.S counties was used. The results show that the variable defined for the population density had the most significant impact on the performance of the developed models, which is an indication of the importance of social distancing in reducing the infection rate and spread rate of the COVID-19. Among the climatology parameters, an increase in the maximum temperature was found to slightly reduce the infection rate. Average temperature, minimum temperature, precipitation, and average wind speed were not found to significantly affect the spread of the COVID-19 while an increase in the relative humidity was found to slightly increase the infection rate. The findings of this research show that it could be expected to have slightly reduced infection rate over the summer season. However, it should be noted that the models developed in this study were based on limited one-month data. Future investigation can benefit from using more comprehensive data covering a wider range for the input variables.

Keywords: COVID-19; Climatology; Adaptive neuro-fuzzy inference system; Virus optimization algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304483
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304483

DOI: 10.1016/j.chaos.2020.110051

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304483