Deep learning systems for automatic diagnosis of infant cry signals
Salim Lahmiri,
Chakib Tadj,
Christian Gargour and
Stelios Bekiros
Chaos, Solitons & Fractals, 2022, vol. 154, issue C
Abstract:
Nowadays, deep learning architectures are promising artificial intelligence systems in various applications of biomedical engineering. For instance, they can be combined with signal processing techniques to build computer-aided diagnosis systems used to help physician making appropriate decision related to the diagnosis task. The goal of the current study is to design and validate various deep learning systems to improve diagnosis of infant cry records. Specifically, deep feedforward neural networks (DFFNN), long short-term memory (LSTM) neural networks, and convolutional neural networks (CNN) are designed, implemented and trained with cepstrum analysis-based coefficients as inputs to distinguish between healthy and unhealthy infant cry records. All deep learning systems are validated on expiration and inspiration sets separately. The number of convolutional layers and number of neurons in hidden layers are respectively varied in CNN and DFFNN. It is found that CNN achieved the highest accuracy and sensitivity, followed by DFFNN. The latter, obtained the highest specificity. Compared to similar work in the literature, it is concluded that deep learning systems trained with cepstrum analysis-based coefficients are powerful machines that can be employed for accurate diagnosis of infant cry records so as to distinguish between healthy and pathological signals.
Keywords: Deep learning; Deep feedforward neural networks; Long short-term memory neural networks; Convolutional neural networks; Infant cry record; Classification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921010547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921010547
DOI: 10.1016/j.chaos.2021.111700
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().