Connecting chaotic regions in the Coupled Brusselator System
F. Drubi,
A. Mayora-Cebollero,
C. Mayora-Cebollero,
S. Ibáñez,
J.A. Jover-Galtier,
Á. Lozano,
L. Pérez and
R. Barrio
Chaos, Solitons & Fractals, 2023, vol. 169, issue C
Abstract:
A family of vector fields describing two Brusselators linearly coupled by diffusion is considered. This model is a well-known example of how identical oscillatory systems can be coupled with a simple mechanism to create chaotic behavior. In this paper we discuss the relevance and possible relation of two chaotic regions. One of them is located using numerical techniques. The another one was first predicted by theoretical results and later studied via numerical and continuation techniques. As a conclusion, under the constrains of our exploration, both regions are not connected and, moreover, the former one has a big size, whereas the later one is quite small and hence, it might not be detected without the support of theoretical results. Our analysis includes a detailed analysis of singularities and local bifurcations that permits to provide a global parametric study of the system.
Keywords: Coupled systems; Brusselator model; Chaos; Bifurcations (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923001418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001418
DOI: 10.1016/j.chaos.2023.113240
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().