Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI
Jianlin Zhang,
Han Bao,
Xihong Yu and
Bei Chen
Chaos, Solitons & Fractals, 2024, vol. 178, issue C
Abstract:
Heterogeneous coexistence of multiple attractors was exhibited by a two-dimensional (2-D) non-autonomous model of adaptive synapse neuron with external excitation. Considering that electromagnetic induction (EMI) is an unavoidable interference in the electrophysiological environment, and memristors are often used to simulate the EMI induced by neuron membrane potentials, can the memristive EMI current be used instead of the external excitation current in the 2-D non-autonomous adaptive synapse neuron model? To this end, this paper proposes a three-dimensional (3-D) autonomous model of memristor-based adaptive synapse neuron (MASN) considering EMI. The MASN model has extremely many equilibrium points with complicated stability evolutions, resulting in the heterogeneous coexistence of extremely many attractors. The heterogeneously coexisting behaviors of the MASN model are investigated through some numerical methods, and the globally coexisting bifurcation behaviors, initials-relied kinetic distributions, and initials-sensitive riddled basins of attraction are thereby demonstrated. Furthermore, based on field programmable gate array (FPGA) platform, the MASN model is digitally implemented and the correctness of the numerical results is verified by hardware experiments.
Keywords: Memristor-based adaptive synapse neuron; Electromagnetic induction; Heterogeneous coexistence; Equilibrium point; Field programmable gate array (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923012298
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012298
DOI: 10.1016/j.chaos.2023.114327
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().