EconPapers    
Economics at your fingertips  
 

Epidemic dynamics in homes and destinations under recurrent mobility patterns

Yusheng Li, Yichao Yao, Minyu Feng, Tina P. Benko, Matjaž Perc and Jernej Završnik

Chaos, Solitons & Fractals, 2025, vol. 195, issue C

Abstract: The structure of heterogeneous networks and human mobility patterns profoundly influence the spreading of endemic diseases. In small-scale communities, individuals engage in social interactions within confined environments, such as homes and workplaces, where daily routines facilitate virus transmission through predictable mobility pathways. Here, we introduce a metapopulation model grounded in a Microscopic Markov Chain Approach to simulate susceptible–infected–susceptible dynamics within structured populations. There are two primary types of nodes, homes and destinations, where individuals interact and transmit infections through recurrent mobility patterns. We derive analytical expressions for the epidemic threshold and validate our theoretical findings through comparative simulations on Watts–Strogatz and Barabási–Albert networks. The experimental results reveal a nonlinear relationship between mobility probability and the epidemic threshold, indicating that further increases can inhibit disease transmission beyond a certain critical mobility level.

Keywords: Epidemic modeling; Human mobility; Structured populations; Markov chain; Complex networks (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925002863
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925002863

DOI: 10.1016/j.chaos.2025.116273

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-04-30
Handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925002863