EconPapers    
Economics at your fingertips  
 

AI-enhanced resilience in power systems: Adversarial deep learning for robust short-term voltage stability assessment under cyber-attacks

Yang Li, Shitu Zhang and Yuanzheng Li

Chaos, Solitons & Fractals, 2025, vol. 196, issue C

Abstract: In the era of Industry 4.0, ensuring the resilience of cyber-physical systems against sophisticated cyber threats is increasingly critical. This study proposes a pioneering AI-based control framework that enhances short-term voltage stability assessments (STVSA) in power systems under complex composite cyber-attacks. First, by incorporating white-box and black-box adversarial attacks with Denial-of-Service (DoS) perturbations during training, composite adversarial attacks are implemented. Second, the application of Spectral Normalized Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (SNCWGAN-GP) and Fast Gradient Sign Method (FGSM) strengthens the model's resistance to adversarial disturbances, improving data quality and training stability. Third, an assessment model based on Long Short-Term Memory (LSTM)-enhanced Graph Attention Network (L-GAT) is developed to capture dynamic relationships between the post-fault dynamic trajectories and electrical grid topology. Experimental results on the IEEE 39-bus test system demonstrate the efficacy and superiority of the proposed method in composite cyber-attack scenarios. This contribution is pivotal to advancing AI-based resilient control strategies for nonlinear dynamical systems, marking a substantial enhancement in the security of cyber-physical systems.

Keywords: Power system; Short-term voltage stability; Adversarial deep learning; Graph Attention Network; AI-based cyber resilience; Smart grid cybersecurity; Resilient control strategy (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925004199
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004199

DOI: 10.1016/j.chaos.2025.116406

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-05-06
Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004199