Mittag-Leffler ultimate boundedness of fractional-order nonautonomous delay systems
Baizeng Bao and
Liguang Xu
Chaos, Solitons & Fractals, 2025, vol. 197, issue C
Abstract:
This paper investigates the Mittag-Leffler ultimate boundedness of fractional-order nonautonomous systems with delay. First, using the properties of the Mittag-Leffler function and the fractional-order comparison principle, a novel fractional-order nonautonomous Halanay inequality is proposed, which no longer requires the conditions of boundedness and common factors of the coefficients of the systems. This implies that the conditions are less conservative than the existing results. Then, with the help of the obtained inequality, some criteria for the Mittag-Leffler ultimate boundedness of the considered system are derived. Finally, examples are given to demonstrate the effectiveness of the findings.
Keywords: Fractional-order nonautonomous system; Fractional-order Halanay inequality; Mittag-Leffler ultimate boundedness; Time delay (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925004953
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004953
DOI: 10.1016/j.chaos.2025.116482
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().