Driven transitions between megastable quantized orbits
Álvaro G. López and
Rahil N. Valani
Chaos, Solitons & Fractals, 2025, vol. 198, issue C
Abstract:
We consider a nonlinear oscillator with state-dependent time-delay that displays a countably infinite number of nested limit cycle attractors, i.e. megastability. In the low-memory regime, the equation reduces to a self-excited nonlinear oscillator and we use averaging methods to analytically show quasilinear increasing amplitude of the megastable spectrum of quantized quasicircular orbits. We further assign a mechanical energy to each orbit using the Lyapunov energy function and obtain a quadratically increasing energy spectrum and (almost) constant frequency spectrum. We demonstrate transitions between different quantized orbits, i.e. different energy levels, by subjecting the system to an external finite-time harmonic driving. In the absence of external driving force, the oscillator asymptotes towards one of the megastable quantized orbits having a fixed average energy. For a large driving amplitude with frequency close to the limit cycle frequency, resonance drives transitions to higher energy levels. Alternatively, for large driving amplitude with frequency slightly detuned from limit-cycle frequency, beating effects can lead to transitions to lower energy levels. Such driven transitions between quantized orbits form a classical analog of quantum jumps. For excitations to higher energy levels, we show amplitude locking where nearby values of driving amplitudes result in the same response amplitude, i.e. the same final higher energy level. We rationalize this effect based on the basins of different limit cycles in phase space. From a practical viewpoint, our work might find applications in physical and engineering system where controlled transitions between several limit cycles of a multistable dynamical system is desired.
Keywords: Self-oscillations; Time delay; Megastability; Orbit quantization; Nonlinear resonances; Quantum analogs (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925005624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005624
DOI: 10.1016/j.chaos.2025.116549
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().