A radial basis scale conjugate gradient neural network process for the Zika model with human movement and reservoirs
Zulqurnain Sabir,
Basma Souayeh,
Muhammad Umar,
Soheil Salahshour,
Huda Alfannakh and
S. Suresh Kumar Raju
Chaos, Solitons & Fractals, 2025, vol. 199, issue P1
Abstract:
The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.
Keywords: Zika model; Neural network; Radial basis; Scale conjugate gradient; Numerical outputs (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925007246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925007246
DOI: 10.1016/j.chaos.2025.116711
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().