A pair-based approximation for simplicial contagion
Federico Malizia,
Luca Gallo,
Mattia Frasca,
István Z. Kiss,
Vito Latora and
Giovanni Russo
Chaos, Solitons & Fractals, 2025, vol. 199, issue P3
Abstract:
Higher-order interactions play an important role in complex contagion processes. Mean-field approximations have been used to characterize the onset of spreading in the presence of group interactions. However, individual-based mean-field models are unable to capture correlations between different subsets of nodes, which can significantly influence the dynamics of a contagion process. In this paper, we introduce a pair-based mean-field approximation that allows to study the dynamics of a SIS model on simplicial complexes by taking into account correlations at the level of pairs of nodes. Compared to individual-based mean-field approaches, the proposed approximation yields more accurate predictions of the dynamics of contagion processes on simplicial complexes. Specifically, the pair-based mean-field approximation provides higher accuracy in predicting the extent of the region of bistability, the type of transition from disease-free to endemic state, and the average time evolution of the fraction of infected individuals. Crucially, for the pair-based approximation we were able to obtain an analytical expression for the epidemic threshold, that elucidates the dependency on the parameters of the model. Through comparison with stochastic simulations, we show that our model correctly predicts that the onset of the epidemic outbreak in simplicial complexes depends on the strength of higher-order interactions. Overall, our findings highlight the importance of accounting for pair correlations when investigating contagion processes in the presence of higher-order interactions.
Keywords: Contagion processes; Higher-order interactions; Simplicial complexes; Phase transitions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925007891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p3:s0960077925007891
DOI: 10.1016/j.chaos.2025.116776
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().