EconPapers    
Economics at your fingertips  
 

CIR bridge for modeling of fish migration on sub-hourly scale

Hidekazu Yoshioka

Chaos, Solitons & Fractals, 2025, vol. 199, issue P3

Abstract: Bridges, which are stochastic processes with pinned initial and terminal conditions, have recently been applied to various problems. We show that a bridge based on the Cox–Ingersoll–Ross process, called a CIR bridge in this paper, reasonably models the intraday number of migrating fish at an observation point in a river. The studied fish migrates between sunrise and sunset each day, which are considered the initial and terminal times, respectively. The CIR bridge is well-defined as a unique pathwise continuous solution to a stochastic differential equation with unbounded drift and diffusion coefficients and potentially represents the on–off intermittency of the fish count data. Our bridge is theoretically novel in that it admits closed-form time-dependent averages and variances, with which the model parameters can be identified efficiently, and is computable by a recently-developed one-step numerical method. The CIR bridge is applied to the sub-hourly migration data of the diadromous fish Plecoglossus altivelis altivelis in the Nagara River, Japan, from February to June.

Keywords: Diffusion bridge; Cox–Ingersoll–Ross model; Migrating fish count; Intermittency; Computational analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925008872
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p3:s0960077925008872

DOI: 10.1016/j.chaos.2025.116874

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-09-26
Handle: RePEc:eee:chsofr:v:199:y:2025:i:p3:s0960077925008872