EconPapers    
Economics at your fingertips  
 

Multilevel Digital Contact Tracing

Gautam Mahapatra, Priodyuti Pradhan, Abhinandan Khan, Sanjit Kumar Setua, Rajat Kumar Pal and Ayush Rathor

Chaos, Solitons & Fractals, 2025, vol. 200, issue P1

Abstract: Digital contact tracing plays a crucial role in alleviating an outbreak, and designing multilevel digital contact tracing for a country is an open problem due to the analysis of large volumes of temporal contact data. We develop a multilevel digital contact tracing framework that constructs dynamic contact graphs from the proximity contact data. Prominently, we introduce the edge label of the contact graph as a binary circular contact queue, which holds the temporal social interactions during the incubation period. After that, our algorithm prepares the direct and indirect (multilevel) contact list for a given set of infected persons from the contact graph. Finally, the algorithm constructs the infection pathways for the trace list. We implement the framework and validate the contact tracing process with synthetic and real-world data sets. In addition, analysis reveals that for COVID-19 close contact parameters, the framework takes reasonable space and time to create the infection pathways. Our framework can apply to any epidemic spreading by changing the algorithm’s parameters.

Keywords: Digital contact tracing; Contact graph; Epidemic spread (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925009166
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:200:y:2025:i:p1:s0960077925009166

DOI: 10.1016/j.chaos.2025.116903

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-10-07
Handle: RePEc:eee:chsofr:v:200:y:2025:i:p1:s0960077925009166