EconPapers    
Economics at your fingertips  
 

Behavior of different ansätze in the generalized projection operator method

K. Nakkeeran and P.K.A. Wai

Chaos, Solitons & Fractals, 2007, vol. 31, issue 3, 639-647

Abstract: Using the recently reported generalized projection operator method for the nonlinear Schrödinger equation, we derive the generalized pulse parameters equations for ansätze like hyperbolic secant and raised cosine functions. In general, each choice of the phase factor θ in the projection operator gives a different set of ordinary differential equations. For θ=0 or θ=π/2, the corresponding projection operator scheme is equivalent to the Lagrangian variation method or the bare approximation of the collective variable theory. We prove that because of the inherent symmetric property between the pulse parameters of a Gaussian ansätz results the same set of pulse parameters equations for any value of the generalized projection operator parameter θ. Finally we prove that after the substitution of the ansätze function, the Lagrange function simplifies to the same functional form irrespective of the ansätze used because of a special property shared by all the anätze chosen in this work.

Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905009690
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:3:p:639-647

DOI: 10.1016/j.chaos.2005.10.011

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:31:y:2007:i:3:p:639-647