Mode decomposition for a synchronous state and its applications
Xiaohua Xiong,
Junwei Wang,
Yanbin Zhang and
Tianshou Zhou
Chaos, Solitons & Fractals, 2007, vol. 31, issue 3, 718-725
Abstract:
Synchronization of coupled dynamical systems including periodic and chaotic systems is investigated both anlaytically and numerically. A novel method, mode decomposition, of treating the stability of a synchronous state is proposed based on the Floquet theory. A rigorous criterion is then derived, which can be applied to arbitrary coupled systems. Two typical numerical examples: coupled Van der Pol systems (corresponding to the case of coupled periodic oscillators) and coupled Lorenz systems (corresponding to the case of chaotic systems) are used to demonstrate the theoretical analysis.
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905009781
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:3:p:718-725
DOI: 10.1016/j.chaos.2005.10.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().