Some properties for the intersection of Moran sets with their translates
Meifeng Dai and
Lixin Tian
Chaos, Solitons & Fractals, 2007, vol. 31, issue 3, 757-764
Abstract:
Motivated by Mandelbrot’s idea of referring to lacunarity of Cantor sets in terms of departure from translation invariance, Nekka and Li studied the properties of these translation sets and showed how they can be used for the classification purpose. In this paper, we pursue this study on a class of Moran sets with their rational translates. We also get the fractal structure of intersection I(x,y) of a class of Moran sets with their rational translates, and the formula of the box-counting dimension. We find that the Hausdorff measures of these sets form a discrete spectrum whose non-zero values come only from shifting vector with the expansion in fraction of (x,y). Concretely, when (x,y) has a finite expansion in fraction, a very brief calculation formula of the measure is given.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906003043
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:3:p:757-764
DOI: 10.1016/j.chaos.2006.03.074
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().