A study on compactly supported orthogonal vector-valued wavelets and wavelet packets
Qingjiang Chen and
Zhengxing Cheng
Chaos, Solitons & Fractals, 2007, vol. 31, issue 4, 1024-1034
Abstract:
In this paper, vector-valued multiresolution analysis and orthogonal vector-valued wavelets are introduced. The definition for orthogonal vector-valued wavelet packets is proposed. A necessary and sufficient condition on the existence of orthogonal vector-valued wavelets is derived by means of paraunitary vector filter bank theory. An algorithm for constructing a class of compactly supported orthogonal vector-valued wavelets is presented. The properties of the vector-valued wavelet packets are investigated by using operator theory and algebra theory. In particular, it is shown how to construct various orthonormal bases of L2(R,Cs) from the orthogonal vector-valued wavelet packets.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906003183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:4:p:1024-1034
DOI: 10.1016/j.chaos.2006.03.097
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().