A generalized nonlinear Schrödinger equation and optical soliton in a gradient index cylindrical media
Mousumi Ballav and
A. Roy Chowdhury
Chaos, Solitons & Fractals, 2007, vol. 31, issue 4, 794-803
Abstract:
A generalized form of nonlinear Schrödinger equation is deduced for the propagation of an optical pulse in a fiber with a cylindrical geometry having a gradient in refractive index in the radial direction. The configuration gives a simple model for a fiber with a cladding or multicore fiber. To begin with we have analyzed in detail the modulational instability in terms of Stokes and anti-Stokes side band amplitudes which shows a significant change with respect to the depth parameter L and dispersion constant. Next we have deduced the equations governing the modulation of parameters of a Gaussian pulse as it propagates through it. The moment method is used for the derivation. The gradient of the refractive index leads to the trapping of the pulse, whereas the balance between nonlinearity (Kerr type) and dispersion in the longitudinal direction guides the propagation. Instead of a constant dispersion profile we have considered the standard dispersion map which helps in shaping of the pulse. The numerical simulation of these derived equations shows how the chirp, width, amplitude of the pulse change with type of gradient and the distance travelled.
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905009835
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:4:p:794-803
DOI: 10.1016/j.chaos.2005.10.087
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().