EconPapers    
Economics at your fingertips  
 

Dynamics in a delayed-neural network

Yuan Yuan

Chaos, Solitons & Fractals, 2007, vol. 33, issue 2, 443-454

Abstract: In this paper, we consider a neural network of four identical neurons with time-delayed connections. Some parameter regions are given for global, local stability and synchronization using the theory of functional differential equations. The root distributions in the corresponding characteristic transcendental equation are analyzed, Pitchfork bifurcation, Hopf and equivariant Hopf bifurcations are investigated by revealing the center manifolds and normal forms. Numerical simulations are shown the agreements with the theoretical results.

Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790600049X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:2:p:443-454

DOI: 10.1016/j.chaos.2006.01.018

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:443-454