A new algorithm for finding the shortest paths using PCNNs
Hong Qu and
Zhang Yi
Chaos, Solitons & Fractals, 2007, vol. 33, issue 4, 1220-1229
Abstract:
Pulse coupled neural networks (PCNNs), based on the phenomena of synchronous pulse bursts in the animal visual cortex, are different from traditional artificial neural networks. Caulfield and Kinser have presented the idea of utilizing the autowave in PCNNs to find the solution of the maze problem. This paper which studies the performance of the autowave in PCNNs aims at applying it to optimization problems, such as the shortest path problem. A multi-output model of pulse coupled neural networks (MPCNNs) is studied. A new algorithm for finding the shortest path problem using MPCNNs is presented. Simulations are carried out to illustrate the performance of the proposed method.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790600141X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:4:p:1220-1229
DOI: 10.1016/j.chaos.2006.01.097
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().