Chaos in a generalized van der Pol system and in its fractional order system
Zheng-Ming Ge and
Mao-Yuan Hsu
Chaos, Solitons & Fractals, 2007, vol. 33, issue 5, 1711-1745
Abstract:
In this paper, chaos of a generalized van der Pol system with fractional orders is studied. Both nonautonomous and autonomous systems are considered in detail. Chaos in the nonautonomous generalized van der Pol system excited by a sinusoidal time function with fractional orders is studied. Next, chaos in the autonomous generalized van der Pol system with fractional orders is considered. By numerical analyses, such as phase portraits, Poincaré maps and bifurcation diagrams, periodic, and chaotic motions are observed. Finally, it is found that chaos exists in the fractional order system with the order both less than and more than the number of the states of the integer order generalized van der Pol system.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906002323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:5:p:1711-1745
DOI: 10.1016/j.chaos.2006.03.028
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().