Complex dynamics in diatomic molecules. Part II: Quantum trajectories
Ciann-Dong Yang and
Hung- Jen Weng
Chaos, Solitons & Fractals, 2008, vol. 38, issue 1, 16-35
Abstract:
The second part of this paper deals with quantum trajectories in diatomic molecules, which has not been considered before in the literature. Morse potential serves as a more accurate function than a simple harmonic oscillator for illustrating a realistic picture about the vibration of diatomic molecules. However, if we determine molecular dynamics by integrating the classical force equations derived from a Morse potential, we will find that the resulting trajectories do not consist with the probabilistic prediction of quantum mechanics. On the other hand, the quantum trajectory determined by Bohmian mechanics [Bohm D. A suggested interpretation of the quantum theory in terms of hidden variable. Phys. Rev. 1952;85:166–179] leads to the conclusion that a diatomic molecule is motionless in all its vibrational eigen-states, which also contradicts probabilistic prediction of quantum mechanics. In this paper, we point out that the quantum trajectory of a diatomic molecule completely consistent with quantum mechanics does exist and can be solved from the quantum Hamilton equations of motion derived in Part I, which is based on a complex-space formulation of fractal spacetime [El Naschie MS. A review of E-Infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals 2004;19:209–36; El Naschie MS. E-Infinity theory – some recent results and new interpretations. Chaos, Solitons & Fractals 2006;29:845–853; El Naschie MS. The concepts of E-infinity. An elementary introduction to the cantorian-fractal theory of quantum physics. Chaos, Solitons & Fractals 2004;22:495–511; El Naschie MS. SU(5) grand unification in a transfinite form. Chaos, Solitons & Fractals 2007;32:370–374; Nottale L. Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific; 1993; Ord G. Fractal space time and the statistical mechanics of random works. Chaos, Soiltons & Fractals 1996;7:821–843] approach to quantum mechanics. The fine-structure internuclear potentials obtained in Part I will be exploited here to derive the eigen-trajectories corresponding to each vibrational substate and to find the scattering trajectories under molecular dissociation. Quantum trajectories computed from the real spectroscopic data for several diatomic molecules will be demonstrated and compared.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907003086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:1:p:16-35
DOI: 10.1016/j.chaos.2007.03.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().