EconPapers    
Economics at your fingertips  
 

The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses

Chen Liu, Jiang Wang, Haitao Yu, Bin Deng, Xile Wei, Jianbing Sun and Yingyuan Chen

Chaos, Solitons & Fractals, 2013, vol. 47, issue C, 54-65

Abstract: Delay-induced synchronization transitions are studied in a modular neuronal network of small-world subnetworks with hybrid synapses in this paper. Numerical results show that the spatiotemporal synchronization transitions in a modular neuronal network not only depend on the information transmission delay, but also can be induced by the variations of the probability of inhibitory synapses and the number of subnetworks in the modular networks. In the hybrid modular network, the information transmission delay is shown to be significant, which can either promote or destroy synchronization of neuronal activity. In particular, the increasing delays can induce the intermittent appearance of regions of synchronization and non-synchronization. Interestingly, it is found that intermittent synchronization transition is relatively profound for smaller and larger probability of inhibitory synapses, while synchronization transition seems less profound for the moderate probability of inhibitory synapses. In addition, if only the delay is appropriate, there exists a suitable modular network topology structure enhancing the synchronized neuronal activity.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077913000040
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:47:y:2013:i:c:p:54-65

DOI: 10.1016/j.chaos.2012.12.008

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:47:y:2013:i:c:p:54-65